Monday, April 6, 2020

Webex: Click here to join
Phone: 408-418-9388
Access code: 798 792 397
password: SPRI

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 2:00 PM| Codes & Standards
2:00-3:15
Ober | 3:00 PM| D6878 TPO Considerations for Revision
3:00-4:00
Sanborn |
| 2:15 PM| | 3:15 PM| Air Barrier Details
3:15-4:45
Janni |
| 2:30 PM| | 3:30 PM| Digital Content & Communications
4:00-4:30, **Burzynski** |
| 2:45 PM| | 3:45 PM| |
| 3:00 PM| | 4:00 PM| |
| 3:15 PM| | 4:15 PM| |
| 3:30 PM| | 4:30 PM| |
| 3:45 PM| | 4:45 PM| |
| 4:00 PM| | 5:00 PM| |

Tuesday, April 7, 2020

Webex: Click here to join
Phone: 408-418-9388
Access code: 793 974 752
password: SPRI7

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
</table>
| 8:00 AM | Codes Development
8:00-9:00
Hickman | 10:00 AM| DORA Rules for Fire & Impact
10:00-10:30, **Sherwin** |
| 8:15 AM | | 10:15 AM| |
| 8:30 AM | | 10:30 AM| Ballast Requirement
10:30-11:15
Ober/Taykowski |
| 8:45 AM | | 11:00 AM| |
| 9:00 AM | DORA Listing Service
9:00-9:45, **Malpezzi** | 11:15 AM| BPT-1
11:30-12:30, **Mader** |
| 9:15 AM | | 11:30 AM| |
| 9:30 AM | | 12:00 PM| |
| 9:45 AM | | 12:15 PM| |
| 10:00 AM| | 12:30 PM| |
| 10:15 AM| | 12:45 PM| |
| 10:30 AM| | 1:00 PM| |
| 10:45 AM| | 1:15 PM| |
| 11:00 AM| | 1:30 PM| |
| 11:15 AM| | 1:45 PM| |
| 11:30 AM| | 2:00 PM| |
| 11:45 AM| | 2:15 PM| |
| 12:00 PM| | 2:30 PM| |
| 12:15 PM| | 2:45 PM| |
| 12:30 PM| | 3:00 PM| |
| 12:45 PM| | 3:15 PM| |
| 1:00 PM | | 3:30 PM| |
| 1:15 PM | | 3:45 PM| |
| 1:30 PM | | 4:00 PM| |
| 1:45 PM | | 4:15 PM| |
| 2:00 PM | | 4:30 PM| |

Board of Directors Meeting
including:
Annual Conference
Member Services
Membership Promotions
Statistics
(meeting end time is an estimate)
All Members are welcome.
AGENDA

I. Call to Order

II. Roll Call & Reading of SPRI Antitrust Statement

III. Review Task Force Objectives

IV. Codes
 a. ICC
 b. California

V. Industry Associations
 a. ACC
 b. ASHRAE
 c. CEC
 d. CRRC
 e. FRSA
 f. IIBEC
 g. RICOWI
 h. Industry Summit

VI. Standards
 a. ANSI activity
 b. ASTM activity
 c. SPRI Standards

VII. Adjournment
AGENDA

I. Call to Order

II. Roll Call & Reading of SPRI Antitrust Statement

III. Update from Adam Ugliuzza (Intertek) (ABAA)
 a. Review the comments and changes to details from ABAA
 b. Review Details to SPRI’s comments given to ABAA from October meeting

IV. Any new business

V. Adjournment
ABAA TIE-IN DETAILS
DATE: JANUARY 29, 2020
1. This guideline will focus primarily on the air barrier transition at the roof-to-exterior wall interface. The guideline includes conceptual details for common wall-to-roof transitions. The intent is that the guideline remains as a living document that is continually updated with additional details and/or with new developments in material and product technologies. This section 1.1 is the first in the series of detail packages that will be released. Remaining sections will be prepared in separate packages in the future.

2. These details are prepared by the joint effort of ABAA Technical Committee, Transitions Terminations and Flashings Task Group and various roofing associations (e.g. SPRI). The objective is to help the designers to further develop tie-in details as required for each project to show the locations of the air, moisture and thermal control layers at the wall to roof interface.

3. Requirements for a continuous air barrier per ASHAE 90.1-2019

 A. The Continuous air barrier shall be designed and installed in the following manner:

 1. Components designed to provide the continuous air barrier and the component’s position within each of the building envelope assemblies shall be clearly identified on the construction documents.
 2. The joints, interconnections, and penetrations of the continuous air barrier components shall be detailed in the construction documents.
 3. The continuous air barrier shall extend over all surfaces of the building enclosure and be identified in the construction documents to be continuous across the components of the below-grade areas, walls, fenestrations, doors and roofs.
 4. The continuous air barrier shall be designed to resist positive and negative pressures from wind, stack effect, and mechanical ventilation and allow for anticipated movements.

 B. The following areas of the continuous air barrier in the building enclosure shall be wrapped, sealed, caulked, gasketed, or taped in an approved manner to minimize air leakage:

 1. Joints around fenestration and door frames.
 2. Junctions between walls and floors, between walls and building corners, and between walls and roofs including ceilings, parapets, copings and walls at foundations.
 3. Penetrations through the continuous air barrier in building envelope roofs, walls and floors.
4. Building assemblies used as ducts or plenums.
5. Joints, seams, connections between planes, and other changes in continuous air barrier materials.
6. Assemblies or components projecting through or attached through the continuous air barrier.
7. Continuous air barrier of conditioned spaces separating conditions spaces from unconditioned spaces, semi-heated spaces, and areas that are not enclosed spaces.

4. The designer shall understand the building physics of each project in order to select the appropriate material(s) and location for each building enclosure control layers (e.g. water, air, vapor, thermal). The selection of the air and/or vapor retarder and its location with respect to the thermal control layer (insulation) is critical to mitigating condensation risk. For example, in instances where insulation is placed both exterior and interior of the primary air control layer, a vapor permeable air barrier is typically recommended, in addition to an air impermeable interior insulation assembly. Designer are always encouraged to run WÄRME UND FEUCHTE INSTATIONÄR (WUFI®) simulations to predict the hygrothermal performance of walls and roofs to understand condensation risk when introducing a vapor retarder into a wall or roof assembly (please note that WUFI does not model three-dimensional air flow through or within the wall or roof assembly).

5. Always consult manufacturer(s) on buildings with high interior moisture generations including but not limited to, pools, ice skating rinks, laboratories, agricultural facilities, etc.

6. Designer must meet the wind uplift requirements for each project when designing the edge metal, anchorage of wood blocking and roof assembly.

7. Anticipate for periodic roof replacement during the life of a building. The tie-in details should accommodate for the possibility of future roof replacement without disturbing the permanent seal between roof air/vapor barrier versus wall air/vapor barrier. Removal of wall cladding, or roof overburden should be considered.
<table>
<thead>
<tr>
<th>TABLE 1.0 PRODUCTS LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td>A3</td>
</tr>
<tr>
<td>A4</td>
</tr>
<tr>
<td>A5</td>
</tr>
<tr>
<td>B1</td>
</tr>
<tr>
<td>B2</td>
</tr>
<tr>
<td>B3</td>
</tr>
<tr>
<td>B4</td>
</tr>
<tr>
<td>B5</td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>D1</td>
</tr>
<tr>
<td>N1</td>
</tr>
<tr>
<td>N2</td>
</tr>
<tr>
<td>N3</td>
</tr>
<tr>
<td>N4</td>
</tr>
<tr>
<td>N5</td>
</tr>
</tbody>
</table>
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

MIN. 2" (51mm) OVERLAP / EMBEDMENT AT CRITICAL INTERFACES. SEE 1.2 FOR DIFFERENT DETAIL OPTIONS.

- CONCRETE CAST-IN-PLACE PRECAST CONCRETE
- TILT-UP WALL
- BRICK MASONRY
- COMPOSITE WALL (NO CAVITY)
- CMU BLOCK WITH AIR-BARRIER COATING

ROOF MEMBRANE TO TIE INTO WALL AND SEAL BETWEEN MEMBRANE TO WALL

CONTINUOUS SEALANT WITH BACKER ROD AT JOINTS, USED AS AN AIR BARRIER TO SEAL AGAINST AIR INFILTRATION/EXFILTRATION AT JOINTS

FLASHING PER ROOF MANUFACTURER

ROOF EDGE:
TIE-IN INTO MASS WALL WITHOUT ROOF VAPOR BARRIER

SEE A1.1, A1.2 & A2.1 FOR ADDITIONAL INFORMATION.
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

OPTION A

Use section of self-adhering thinner roof membrane flashing to conform the edge conditions and seal roof membrane to flashing.

Where roof membrane can conform the edge conditions, use roof membrane only & fully adhere to substrate.

Use 304 self-adhering stainless steel flashing in sealant cavity and extend up min. 6” (152mm) to seal with roof membrane.

Cont. backer rod and sealant, properly seal at vertical and horizontal junctions of sealant.

Note: For additional notes see **A.1**

OPTION B

Use cont. sheet metal wind cleat as a tie-in between wall to sealant; sealant to sheet metal and sheet metal to roof membrane.

Cont. horizontal sealant along entire perimeter. At vertical joints, inject additional sealant to fill the vertical cavity.

Abaa Guide Details for Roof to Wall Tie-In

See **A.1.1, A1.2 & A.2.1** for additional information.

Sheet No.

1.2
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

ROOF MEMBRANE TO TIE INTO WALL AND SEAL BETWEEN MEMBRANE TO WALL

SEALANT WITH BACKER ROD AT JOINTS USED AS AN AIR BARRIER TO SEAL AIR INFILTRATION/EXFILTRATION AT JOINTS

SEE OPTION A BELOW

- CONCRETE CAST-IN-PLACE PRECAST CONCRETE
- TILT-UP WALL
- BRICK MASONRY
- COMPOSITE WALL (NO CAVITY)
- CMU BLOCK WITH AIR-BARRIER COATING

OPTION A

ROOF MEMBRANE SEALED TO SHEET METAL TRIM

CONT. SHEET METAL TRIM SET IN CONT. SEALANT SEAL AT VERTICAL JOINTS

ROOF VAPOR BARRIER SEALED TO SHEET METAL FOR EARLY DRYING IN OF BUILDING.

SEE A.1.1, A.1.2 & A.2.1 FOR ADDITIONAL INFORMATION.
FLASHING PER ROOF MEMBRANE MANUFACTURER

REFER TO SHEET 1.2 FOR ADDITIONAL TERMINATION OPTIONS.

EXTERIOR SEALANT WITH BACKER ROD AT JOINTS USED AS AN AIR BARRIER TO SEAL AIR INFLATION/EXFILTRATION AT JOINTS

INTERIOR SEALANT WITH BACKER ROD AT JOINTS

ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

SEE A1.1, A1.2 & A2.1 FOR ADDITIONAL INFORMATION.

ROOF EDGE: SINGLE WYTHE CMU WALL

ADHERED SECTION BETWEEN TWO LAYERS TO DEVELOP AIR BARRIER OR AS REQUIRED BY MANUFACTURERS

SHEET NO. 1.4
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

REFER TO SHEET 1.2 FOR ADDITIONAL TERMINATION OPTIONS.

LIQUID-APPLIED VR ON MASONRY, SEAL AROUND BEAM POCKETS

FLASHING PER ROOF MANUFACTURER

AIR IMPERMEABLE INSULATION ASSEMBLY

FIRE-RESISTANT MATERIAL(S) WHERE REQUIRED

USE MIN. 2 LBS/CUBIC FOOT DENSITY POLYURETHANE FOAM, MIN. 1" THICKNESS TO BRIDGE VAPOR RETARDERS

AIR BARRIER TRANSITION FLASHING

HAT CHANNELS

INTERIOR FINISHES, FIRE RESISTANT MATERIAL, SPECIAL INTERIOR SURFACES AS REQUIRED FOR EACH BUILDING TYPE

ROOF EDGE: SINGLE WYTHE CMU WALL WITH INSIDE INSULATION & ROOF VAPOR BARRIER ON GYPSUM BOARD

SEE A1.1, A1.2 & A2.1 FOR ADDITIONAL INFORMATION.
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

REFER TO SHEET 1.2 FOR ADDITIONAL TERMINATION OPTIONS.

LIQUID-APPLIED VR ON MASONRY. SEAL AROUND BEAM POCKETS

FLASHING PER ROOF MEMBRANE MANUFACTURER

AIR IMPERMEABLE INSULATION ASSEMBLY

FIRE-RESISTANT MATERIAL(S) WHERE REQUIRED

USE MIN. 2 LBS/CUBIC FOOT DENSITY POLYURETHANE FOAM, MIN. 1" THICKNESS TO BRIDGE VAPOR RETARDERS

AIR BARRIER TRANSITION FLAShING

HAT CHANNELS

INTERIOR FINISHES, FIRE RESISTANT MATERIAL, SPECIAL INTERIOR SURFACES AS REQUIRED FOR EACH BUILDING TYPE

C1 ALL SEAMS ARE TAPED

ADHERED SECTION BETWEEN TWO LAYERS TO DEVELOP AIR BARRIER OR AS REQUIRED BY MANUFACTURERS

ROOF EDGE: SINGLE WYTHE CMU WALL WITH INSIDE INSULATION & ROOF VAPOR BARRIER ON METAL DECK

SEE A.1.1, A1.2 & A.2.1 FOR ADDITIONAL INFORMATION.

SHEET NO. 1.6
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

Sheet Metal Flashing to Seal Between Wall Barrier and Roof Membrane. See 3D Sketch Below Also.

Install membrane flashing overlapping min 3" (75mm) on wall or self-adhering 304 stainless steel flashing where compatible with wall barrier.

Flashing per roof manufacturer.

Wall cavity vent.

Apply (3) beads of 3/8" (10mm) diameter continuous sealant in splice area. Designer may use double-sided singly-PLY tape to seal the splice as an option.

Note: See sheet 2.1.1 for future re-roofing guide detail.

Dimensions as needed to make proper splice.

Minimum 0.040" (1mm) thick aluminum or 26 ga (0.76mm) stainless steel flashing, dimensions as required.

Splice min. 4" (102mm) at joints. Apply (2) beads of 3/8" (10mm) diameter continuous sealant in splice area. Designer may use double-sided singly-PLY tape to seal the splice as an option.

ADHERED SECTION BETWEEN TWO LAYERS TO DEVELOP AIR BARRIER OR AS REQUIRED BY MANUFACTURERS

ROOF EDGE: TIE-IN INTO CAVITY WALL

ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

SEE A1.1, A1.2 & A2.1 FOR ADDITIONAL INFORMATION.

SHEET NO.

2.1
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

FUTURE ROOF MEMBRANE WILL ADHERE TO REMAINING SECTION OF EXISTING MEMBRANE WITH TWO-SIDED TAPES OR AS APPROVED BY FUTURE MANUFACTURER

EXISTING WIND CLEAT TO REMAIN INTACT, REINFORCE FASTENING AS NEEDED

FUTURE NEW SHEET METAL FASCIA & RING SHANK NAILS

FUTURE ROOF SYSTEM FLASHING

FUTURE ROOF MEMBRANE

SECTION OF EXISTING ROOF MEMBRANE TO REMAIN INTACT (SOLID LINE)

TIE-IN DURING FUTURE REROOFING

NOTE: REFER TO FUTURE MANUFACTURER FOR SPLICE DETAIL BETWEEN EXISTING AND NEW ROOF MEMBRANE

SEE A.1.1, A1.2 & A2.1 FOR ADDITIONAL INFORMATION.

ROOF EDGE: TIE-IN INTO CAVITY WALL

AIR BARRIER ASSOCIATION OF AMERICA

ADHERED SECTION BETWEEN TWO LAYERS TO DEVELOP AIR BARRIER OR AS REQUIRED BY MANUFACTURERS

SHEET NO. 2.1.1
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

- Flashing per roof manufacturer

- Install membrane flashing overlapping min 3” (75mm) on wall or self-adhering 304 stainless steel flashing where compatible with wall & roof barriers

- Sheet metal fascia / drip edge as required on each project

- Wall cavity vent

- Apply (3) beads of 3/8” (10mm) diameter continuous sealant in splice area. Designer may use double-sided singly-ply tape to seal the splice as an option.

- Dimensions as needed to make proper splice

- Minimum 0.040” (1mm) thick aluminum or 26 ga (0.76mm) stainless steel flashing, dimensions as required

- Splice min. 4” (102mm) at joints. Apply (2) beads of 3/8” (10mm) diameter continuous sealant in splice area. Designer may use double-sided singly-ply tape to seal the splice as an option.

See A1.1, A1.2 & A2.1 for additional information.

ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

- Adhered section between two layers to develop air barrier or as required by manufacturers
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

ROOF GUTTER

FLASHING PER ROOF MEMBRANE MANUFACTURER

[Diagram showing connections and details]

CONDUCTOR HEAD

APPROVED SEALANT AT JOINTS USED AS AN AIR BARRIER TO SEAL AIR INFILTRATION/EXFILTRATION

DOWNSPOUT

ROOF MEMBRANE TO TIE INTO WALL AND SEAL BETWEEN MEMBRANE TO WALL

CONCRETE CAST-IN-PLACE; PRECAST CONCRETE; TILT-UP WALL; BRICK MASONRY COMPOSITE WALL (NO CAVITY); CMU BLOCK WITH AIR-BARRIER

SEE A1.1, A1.2 & A2.1 FOR ADDITIONAL INFORMATION.
NOTES:

1. ROOF MEMBRANE MANUFACTURER SHALL PROVIDE A BASE FLASHING DETAIL, WHERE ROOF AIR & VAPOR BARRIER SHOULD BE EXTENDED VERTICAL UP TO SEAL WITH ROOF MEMBRANE. THIS DETAIL WILL ADDRESS THE MEMBRANE'S MECHANICAL ATTACHMENT AGAINST WIND UPLIFT PRESSURE ALSO.

2. ENSURE ON BLACK ROOFS, THE ASPHALTIC ROOF AIR & VAPOR BARRIER DOES NOT DEGRADE DUE TO MELTING OF ASPHALT UNDER VERY HIGH SURFACE TEMPERATURE OF BLACK ROOF MEMBRANE.

3. ON WHITE ROOFS, ENSURE THAT ASPHALT DOES NOT LEACH THROUGH THE WHITE MEMBRANE, CAUSING DISCOLORATION OF ROOF MEMBRANES.

4. ON PVC ROOF MEMBRANES, ENSURE THE ASPHALTIC PRODUCTS DO NOT COME IN CONTACT WITH PVC ROOF MEMBRANE.
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

- 1/2" (13mm) MIN. THICK PLYWOOD
- 3/4" (19mm) MIN. THICK PLYWOOD
- WOOD CARPENTRY FRAME STRUCTURALLY SECURED INTO TOP STRUCTURAL STEEL CHANNEL

- INSTALL MEMBRANE FLASHING OVERLAPPING MIN 3" (75mm) ON WALL OR SELF-ADHERING 304 STAINLESS STEEL FLASHING WHERE COMPATIBLE WITH WALL & ROOF BARRIERS

- SHEET METAL COPING AS REQUIRED ON EACH PROJECT

- WALL CAVITY VENT

- SPRAY APPLIED POLYURETHANE FOAM INSULATION

- EXTERIOR CLADDING MAY VARY ON EACH PROJECT

- WALL BASE DETAIL AS REQUIRED BY EACH ROOF MEMBRANE MANUFACTURER. SEE NOTES ON SHEET 4.1

ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

PARAPET WALL WITH FOAM INSULATION

SEE A1.1, A1.2 & A2.1 FOR ADDITIONAL INFORMATION.
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

- Sheet Metal Coping as required on each project
- Structural Wood Blocking
- Cont. Sheet Metal Cleat secured into structural wood
- Wall Cavity Vent
- High Compressive Strength Roof Insulation, Thickness (R-Value) as required to avoid condensation inside the wall cavity
- Min. 1/2" (13mm) thick APA-rated plywood
- Min. 3/4" (19mm) thick APA-rated plywood
- Install membrane flashing overlapping min 3" (75mm) on wall or self-adhering 304 stainless steel flashing where compatible with wall & roof barriers
- Exterior Cladding may vary on each project
- Wall base detail as required by each roof membrane manufacturer

PARAPET WALL WITH CONTINUOUS INSULATION (c.i.)
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

WALL BASE DETAIL AS REQUIRED BY EACH ROOF MEMBRANE MANUFACTURER. ROOF AIR & VAPOR BARRIER MAY EXTEND VERTICAL UP TO SEAL WITH ROOF MEMBRANE. REFER TO NOTES ON SHEET 4.1 IF SEALING WITH MEMBRANE IS REQUIRED.

ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

SEE A.1.1, A.1.2 & A.2.1 FOR ADDITIONAL INFORMATION.

ROOF & WALL TIE-IN PRIOR TO PARAPET CONSTRUCTION
INSIDE CORNER PER MANUFACTURER’S RECOMMENDATIONS

EXPANSION JOINT IN AIR AND VAPOR RETARDER, PER MANUFACTURER’S RECOMMENDATIONS

OVERHANG/CANTILEVERED ROOF PROJECTION EDGE

SEE A.1.1, A.1.2 & A.2.1 FOR ADDITIONAL INFORMATION.
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

ROOF VAPOR BARRIER FULLY ADHERED TO METAL DECK AND PLYWOOD

SEE A.1.1, A1.2 & A2.1 FOR ADDITIONAL INFORMATION.

ADHERED SECTION BETWEEN TWO LAYERS TO DEVELOP AIR BARRIER OR AS REQUIRED BY MANUFACTURERS

OVERHANG/CANTILEVERED ROOF PROJECTION EDGE WITH ROOF VAPOR BARRIER

SHEET NO. 6.1.1
USE MIN. 2 LBS/CUBIC FOOT DENSITY POLYURETHANE FOAM, MIN. 1" THICKNESS TO BRIDGE VAPOR RETARDERS

EXPANSION JOINT IN AIR AND VAPOR RETARDER, PER MANUFACTURER’S RECOMMENDATIONS

SHEET METAL FASCIA/DRIP EDGE AS REQUIRED ON EACH PROJECT
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

- Liquid applied flashing around all structural penetrations
- Expansion joint in air and vapor retarder, per manufacturer’s recommendations
- Sheet metal fascia/drip edge as required on each project

OVERHANG/CANTILEVERED ROOF PROJECTION EDGE

SEE A.1.1, A.1.2 & A.2.1 FOR ADDITIONAL INFORMATION.
ABAA GUIDE DETAILS FOR ROOF TO WALL TIE-IN

See A1.1, A1.2 & A2.1 for additional information.

VERBAL WALL BETWEEN LOWER ROOF AND UPPER ROOF

Adhered section between two layers to develop air barrier or as required by manufacturers.
AGENDA

I. Call to Order

 A. Hickman

II. Roll Call & Reading of SPRI Antitrust Statement

III. Review Task Force Objectives

IV. ICC Group B Code/2021 Code Update

V. Discussion of 2020 plans to prepare for next ICC code change cycle (2024 edition)

VI. ASHRAE update

VII. Florida update

VIII. Adjournment
AGENDA

I. Call to Order

II. Roll Call & Reading of the SPRI Antitrust Statement

III. Program status

IV. Feedback from listing owners on engagement of internal marketing & sales

V. Listing Owner verifications

VI. Supporting documentation revisions

VII. Recent DORA updates

VIII. DORA outreach 2020

IX. Adjournment
SPRI
DORA Rule Fire & Impact Task Force
Virtual Meeting Webex
April 7, 2020
10:00 a.m.

AGENDA

I. Call to order
 J. Sherwin

II. Roll call & reading of SPRI Antitrust Statement

III. Rule establishment for Fire and Impact standards

IV. Adjournment
SPRI
RP-4 Revision Ballast Requirement Task Force
Virtual Meeting Webex
April 7, 2020
10:30 a.m.

AGENDA

I. Call to Order

R. Ober

II. Roll Call & Reading of SPRI Antitrust Statement

III. Provide summary of actions to date for providing design guidelines for ballasted roofing systems on buildings greater than 150 feet in height

IV. Review Jay Crandell’s proposed addition (attached)

V. Discuss adding a version of Jay Crandell’s language into the Commentary Section of RP-4

VI. Discuss the following next steps:
 a. Keep Mr. Crandell’s proposed addition “as is” or re-write
 b. Other plans, if any
 c. Make assignments to move forward

VII. Adjournment
SPRI
Technical Committee
Virtual Meeting Webex
April 07, 2020
1:15 p.m.

AGENDA

I. Call to Order
 J. Bates

II. Roll Call & Reading of SPRI Antitrust Statement

III. Minutes
 Vote on approval of the minutes of the January 2020 meeting (attached)

IV. Task Force Reports
 A. Air Barrier Details
 A. Janni
 B. Air Intrusion (no meeting)
 A. Janni
 C. Ballast Requirements
 T. Taykowski/R. Ober
 D. Codes Development
 A. Hickman
 E. Codes & Standards
 R. Ober
 F. Code Compliance Interface
 E. Younkin/L. Hull
 G. Code Official Training
 B. Chamberlain
 H. D6878 TPO Considerations for Revision
 W. Sanborn
 I. DORA® Listing Service
 J. Malpeazzi
 J. DORA Rule for Adding Fire & Impact
 J. Sherwin
 K. BPT-1
 C. Mader
 L. IA-1 Revision (no meeting)
 S. Childs
 M. IBHS Training (no meeting)
 M. Darsch
 N. Very Severe Hail FAQ
 J. Schwetz
 O. VOC Regulatory Monitoring
 J. Bates
 P. Wetting Curves
 D. Hawn
 V. Website/Digital Content & Communication
 B. LeClare

VI. New Business

VII. Adjournment
MINUTES

Call to Order
The Technical Committee meeting was called to order at 2:45 p.m. EST by Technical Committee Chair Chris Mader. The SPRI Antitrust Statement was read. *

Roll Call
Those present were:
Chris Mader, OMG Roofing Products
Adam Aharonian, SFS Group USA
Warren Barber, National Gypsum
Bas Baskaran, NRCC
Brian Buckle, Intertek
Adam Burzynski, Carlisle Construction Materials
Luis Cadena, NEMO | etc.
Brian Chamberlain, Carlisle Construction Materials
Stan Choiniere, StanCConsulting
Joan Crowe, AIA, GAF
Phillip David, IB Roof Systems
Brian Davis, GAF
Heather Estes, GAF
Carl Flieler, Canadian General Tower Limited
David French, Carlisle Construction Materials, LLC
Tony Fuller, National Gypsum
Mike Giangiacomo, Flex Membrane Int’l Corp.
Kirk Goodrum, Siplast
David Hawn, Dedicated Roof & Hydro-Solutions
Amanda Hickman, The Hickman Group
George Howell, Martin Marietta Magnesia Specialties
Lynsey Hull, NEMO | etc.
Al Janni, Duro-Last Roofing, Inc.
Joseph Kalwara, Firestone Building Products Co
Brendan Knapman, ROCKWOOL
Mikael Kuronen, Georgia-Pacific Gypsum LLC

Bob LeClare, ATAS International, Inc.
Tony Mallinger, Metal-Era, Inc.
Joe Malpezzi, Carlisle Construction Materials, LLC
Saverio Marzella, ROCKWOOL
Rick Montoya, Acme Cone Company
Steve Moskowitz, Atlas Roofing Corporation
Jim Pieczynski, Blue Ridge Fiberboard, Inc.
Brian Randall, National Gypsum
Ron Reed, Intertek
Brandon Reynolds, Carlisle Construction Materials
William Sanborn, Johns Manville Corporation
Joe Schwetz, Sika Sarnafil
Dwayne Sloan, UL LLC
Zeb Sukle, Johns Manville Corporation
Todd Taykowski, Firestone Building Products Co
Brad Van Dam, Metal-Era, Inc.
Steve Wadding, Polyglass USA, Inc.
Jarrod Woodland, SFS Group USA
Eric Younkin, Soprema, Inc.

Guest present was:
André Desjarlais, ORNL

Staff present were:
Randy Ober, SPRI
Carl Silverman, Esq., SPRI

*SPRI Antitrust Statement: SPRI complies with antitrust laws and requires participants in its programs to comply with antitrust laws. Discussions which could affect competitive pricing decisions or other competitive factors are forbidden. There may be no discussions of pricing policies or future prices, production capacity, profit margins or other factors that may tend to influence prices. In discussing technical issues, care should be taken to avoid discussing potential or planned competitive activities. Members and participants should be familiar with the SPRI Antitrust Policy and act in conformity with it.
Discussion
On motion duly made, the minutes of the October 2019 Technical Committee meeting were approved as distributed.

Review of Completed Objectives
1. ED-1 Edge - June 2019;
2. MCA Standard development - June 2019;
3. PCR Update - July 2019;
4. RD-1 Revision RD-1 - July 2019;
5. RP-4 Revision - October 2019; and

Task Force Reports
1. Air barrier details - Task Force Chair Al Janni reported the following items:
 a. The Task Force is working with Air Barrier Association of America to create updated air barrier details; and
 b. Reviewing comments on draft details.
2. Air Intrusion - Task Force Chair Al Janni reported the following item - Developing a test protocol to determine if there is an energy loss in MF single ply systems (due to membrane movement).
3. Code Development – The Task Force Chair Amanda Hickman reported the following items:
 a. All ICC Code proposals were approved;
 b. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) is working on determining the effect of thermal bridging on energy usage; and
 c. FL building code is being updated - SPRI has submitted one comment.
4. Codes & Standards - Task Force Chair Randy Ober reported the following items:
 a. WD-1 ANSI/SPRI WD-1 Wind Design Standard Practice for Roofing Assemblies was approved January 6, 2020;
 b. FL Building Code is replacing “Testing Application Standard (TAS 131-95);
 c. Standard Requirements for Thermoplastic Olefin Elastomeric Based Sheet Used in Single-Ply Roof Membrane” with ASTM D6878; and
 d. The Task Force decided not to ballot the proposal that allows calculation of parapet height for ballasted systems >150 feet for inclusion in ASCE7.
5. Code Compliance and Product Approval – Task Force Chair Lyndsay Hull reported the following items:
 a. Task Force Members met with Miami-Dade (MD) officials regarding receiving notices of acceptance (NOA) for private labeled products. As a result of this meeting, nothing will be required if the private label customer is requesting the identical NOA approvals of the original manufacturer (i.e. just changing the name);
 b. The Dade County website is outdated and does not include the entire process that a manufacturer must follow to gain Dade County approvals;
 c. Dade County is working with SPRI to allow 3rd party labs to submit data for approvals; and
 d. An outside consultant called in during the Task Force meeting to describe various methods to get relief from some of the problems associated with Dade County FL.
6. Code Official Training – Task Force Chair Brian Chamberlain reported the following items:
 a. SPRI currently has 12 hours of training modules, but most are higher level learning. However, SPRI has basic training for code officials that need it as well; and
 b. SPRI missed the deadline for the 2020 EduCode due to lack of communication from ICC.
7. Annual Conference – Task Force Chair Bob Reel reported the following items:
8. D6878 TPO Considerations for Revision – Task Force Chair Will Sanborn reported the following items:
 a. Adding a new “Type” of TPO that includes a fleece backing within ASTM D6878;
 b. Working through ASTM & SPRI to conduct an ASTM round robin ILS program for fleece adhesion. Samples have been submitted by several TPO manufacturers and are in the process of being tested; and
 c. Addition of an impact test is being discussed as well.
9. DORA® Listing Service: Task Force Chair Joe Malpezzi reported the following items:
 a. Updates are being made to the DORA® software;
 b. 1750 products are now listed in DORA® / 3500 assemblies;
 c. Multi-ply systems will now be included in the program;
 d. Looking at adding a contractor print-out feature which can be activated once the user finds an assembly that meets their needs;
 e. DORA® will be displayed at EduCode, IIBEC & IRE;
 f. Need to move forward with the promotion of DORA®; and
 g. Need to educate the potential users regarding what DORA® actually is, how it will benefit them, and how to use the program.
10. DORA® Rules for adding fire and impact – Task force Co-Chair Scott Morrison reported the following items:
 a. Discussed adding fire and impact to the DORA® program;
 b. Discussed why SPRI / DORA® may want to remain only in wind (what they are experts in) and not dabble in fire and impact. UL had 5000 hits in 90 days on its website which features fire resistance ratings.
11. Fastener Plate Pull-Through – Task Force Chair Chris Mader reported the following items:
 a. Changing name to BPT-1 Test Standard for Comparative Pull Through Strengths of Stress Plates and Substrate Board Materials Used with Low Slope Roofing Systems; and
 b. This subject was discussed with Factory Mutual (FM) and the standard development may become a joint effort between SPRI and FM.
12. IA-1 Revision – Task Force Chair Stephen Childs reported the following items:
 a. The standard was partially rewritten with the suggestions from the Task Force’s initial meeting. No additional submissions from the Task Force were submitted since then;
 b. The Task Force discussed the size of the test sample and the need to cut around the test sample to isolate it from the rest of the existing roofing assembly.
 c. Mr. Childs will update the document and send it to the Task Force by the end of January for review.
 d. The Task Force decided that cutting around the sample is still needed. Without cutting to the roof deck to isolate the sample, the test may show a false positive result. The test area will be affected by the testing device due to the fact the surface being tested will be held down by the frame of the testing equipment.
13. IBHS training – Task Force Chair Mike Darsch reported the following items:
 a. Chuck Miccolis and Mark Zehnal from IBHS presented information regarding the Fortified Commercial Program and how SPRI can work together with them to train applicators in the use of this program.
 b. Discussion ensued regarding what role manufacturers will play in training contractors in the specifics of the Fortified Commercial Program.
14. Very Severe Hail FAQ – Task Force Chair Tim McQuillen reported the following items:
 a. Creating a SPRI hail impact test may not in SPRI’s best interest since there are many other impact testing methods currently in place;
b. SPRI may want to work with IBHS in creating a test method. IBHS is conducting testing and research for ice ball impact on single-ply membranes;
c. The evaluation method used by FM to determine the impacted sample for pass / fail was discussed;
d. The Task Force will attempt to meet with FM to discuss pass / fail parameters;
e. SPRI may want to take pictures of various conditions of the membrane and substrate after impact and assign a pass / fail designation to each (this would make the judgement less subjective).

15. VOC Regulatory Monitoring – Task Force Chair Justin Bates reported the following items:
 a. Will conduct a Webex to discuss the ARI survey results;
 b. The PCBTF Survey was not approved by the TF and a follow-up meeting will be scheduled to discuss and resolve any issues;
 c. SCAQMD Rule 102 Proposed Changes were discussed; and
 d. The Task Force would like to form a team and begin planning technology assessment that is due in 2022.

16. WD-1 update – Task Force Chair Joe Malpezzi reported the following items:
 a. There is one remaining negative. The Task Force revised the document to address this negative; and
 b. The revised copy will be sent to the National Roofing Contractors Association (NRCA) for review with a request to withdraw its negative.

17. Wetting Curves – Task Force Chair Dave Hawn reported the following items:
 a. Data that has been produced by NRCA needs additional review;
 b. The various manufacturers of tested insulation will be given additional time to review data; and
 c. A group will be formed to review the data after the manufacturers get a chance to review and digest the information.

18. Website/Digital Content & Communication – Chair Adam Burzynski reported the following items:
 a. New content has been developed for the website;
 b. The standards page where users typically land on SPRI’s website is not easy to navigate. The Task Force group is in the process of redesigning this webpage and which project should cost no more than $1000; and
 c. Mr. Burzynski requested that people forward any relevant content to him.

Adjournment
There being no further business, the meeting was adjourned at 3:30 p.m. EST.

Submitted by: Randy Ober, SPRI Technical Director

These minutes were reviewed by SPRI Legal Counsel.
ASCE 7-16 Change Proposal Form

Proposals to revise the ASCE 7-16 Standards must be submitted using this form. Proposals from outside the Committee/Subcommittees are to be submitted via email to Jon Esslinger, Director, Codes and Standards, at Jesslinger@asce.org

Submitted by: Jay Crandell, P.E.
ARES Consulting
301-466-7420
jcrandell@aresconsulting.biz

Submission date: 12/5/2019

Considered by ASCE 7 Subcommittee on: Chs. 26-31: Wind Loads

FILENAME: WL-CH26-17r00
BRIEF DESCRIPTION: New Section 26.14 and Commentary for Roof Aggregate Blow-off

SCOPE: Chapter 26, New Sections 26.14 & C26.14
(NOTE: Proposals submitted for the wind load provisions will be required to include a sample problem, if applicable. The Chair will contact you with the requirements.)

PROPOSAL FOR CHANGE: (Use strike-out and underline format to indicate text to be removed or added, respectively; related modification/proposed addition to Commentary shall be included below.)

Add new section 26.14 as follows:

26.14 ROOF SYSTEMS WITH LOOSE AGGREGATE

Roof systems with loose aggregate surfacing shall be designed to resist roof aggregate blow-off in accordance with the locally applicable building code or a rational analysis method defined in the recognized literature.

Commented [JC1]: ASCE 7 currently doesn’t make this type of link to locally applicable code requirements, but in this case it seems appropriate to do (e.g., Florida has unique requirements, etc.)

Commented [JC2]: This “rational analysis” language is how ASCE 7 invokes use of design procedures not in the standard but described in the commentary and referenced literature in the commentary.
COMMENTARY CHANGE: (Use strike-out and underline format to indicate text to be replaced and new text, respectively.)

Revise Section C26.12 (4th paragraph only) as follows:

C26.12 Enclosure Classification

The standard requires all glazing in the lower 60 ft (18.3 m) of Category II, III, or IV buildings sited in wind-borne debris regions to be protected with an impact-protective system or to be made of impact-resistant glazing. Glazing higher than 60 ft (18.3 m) above grade may be broken by wind-borne debris when a debris source is present, such as aggregate-surfaced roofs on buildings within 1,500 ft (457 m) of the new building. This includes gravel or stone used as ballast that is not protected by a sufficiently high parapet [see Section C26.14]. Accordingly, the glazing in the new building, from 30 ft (9.1 m) above the source building to grade needs to be protected with an impact-protective system or be made of impact-resistant glazing. If loose roof aggregate is proposed for the new building, it too should be considered as a debris source because aggregate can be blown off the roof and be propelled into glazing on the windward and leeward sides of the building. Although other types of wind-borne debris can impact glazing higher than 60 ft (18.3 m) above grade, at these higher elevations, loose roof aggregate has been the predominant debris source in previous wind events. The requirement for protection 30 ft (9.1 m) above the debris source is to account for debris that can be lifted during flight. The following references provide further information regarding debris damage to glazing: Beason et al. (1984), Minor (1985, 1994), Kareem (1986), and Behr and Minor (1994).
ROOF SYSTEMS WITH LOOSE AGGREGATE

Concern with roof aggregate blow-off is not new (Dickkers et al. 1971; Minor, 1977; Savage et al. 1984; Kareem, 1986; McDonald et al. 1990; Smith et al. 1992; FEMA 488, 2005; and FEMA 549, 2006; RICOWI 2007; FEMA 757, 2009). It is repeatedly reinforced by field observations, particularly in regard to damage caused to glazing on surrounding buildings and automobiles. Most problems have been associated with extreme wind events such as hurricanes and have involved roofs not in compliance with ANSI/SPRI RP-4 (SPRI 2013) and with aggregate surfaced built-up roofs (BUR) and sprayed polyurethane foam (SPF) roofs which the RP4 standard was not intended to address (SPRI 2008).

Design procedures for assessing and controlling the potential for roof aggregate scour and blow-off have been studied and developed (Kind and Wardlaw, 1976; Kind, 1977). Those procedures are the basis of design recommendations in England (BRE 1986), and also serve as the basis for the ANSI/SPRI RP-4 standard mentioned above for single-ply membrane roofing systems that use stone and pavers for ballast. More recently, a simplified design methodology, based on Kind and Wardlaw (1976), has been developed and evaluated in terms of its ability to predict roof aggregate blow-off (or absence of blow-off) as documented in performance surveys of more than 25 buildings in five different hurricane wind events (Crandell and Smith 2009; Morrison, 2011). This simplified procedure serves as the basis for prescriptive requirements in the 2021 edition of the International Building Code, Section 1504.8 (ICC, 2021).

The key design parameters affecting the potential for roof aggregate blow-off include the site’s design wind speed and exposure (particularly the wind speed at the roof height), the height of the roof, the height of the parapet, and the size of roof aggregate. Using the procedure of Crandell and Smith (2009), the following equations are derived as a means to estimate a minimum parapet height required to control the risk of roof aggregate blow-off:

\[H_p \geq 0.41 \left(K_h K_w K_d K_o \right)^{1/2} \left(0.6 \right)^{1/3} - 34.6 \] \hspace{1cm} (C26.14-1)

\[H_p \geq 0.068 \left(K_h K_w K_d K_o \right)^{1/2} \left(0.6 \right)^{1/3} - 0.88 \] \hspace{1cm} (C26.14-1s)

where

- \(H_p \) = parapet height above loose aggregate roof surfacing, inches (m).
- \(d \) = nominal aggregate diameter of the specified aggregate mix whereby not more than 50% by weight of the aggregate mix is smaller than \(d \), inches (mm).

Other parameters are as defined in Chapter 26 of ASCE 7.

The above equations apply to aggregate nominal diameters ranging from 3/8-inch (6.4mm) to 3 inches (64 mm) on low-slope roofs of low-rise buildings of any size and high rise buildings where the roof plan aspect ratio does not exceed 2:1. These limitations are based on the scope of the Kind (1977) wind tunnel data and also field studies documented in Crandell and Smith (2009) and Morrison (2011).

The following details how the design procedure reported by Crandell and Smith (2009) was adapted and used to derive the above equations. First, the design wind speed at the elevation of a loose aggregate-surfaced roof can be determined as \(V_{roof} = V (0.6)^{1/2} (K_h K_w K_d K_o)^{1/2} \). The \(0.6^{1/2} \) factor represents a conversion of \(V \) to an allowable stress wind speed basis upon which the methodology was derived. From Crandell and Smith (2009), the design wind speed at roof elevation, \(V_{roof} \), must not exceed 1.1 \(V_h \) \(d^{1/3} \) where \(V_h = 20.8 H_p + 60 \) and \(H_p \) is the parapet height in units of feet. As reported in Crandell and Smith (2009) and...
shown in Figure C26.14-1, it represents a conservative fit to wind tunnel data for tested low-rise and high-rise building geometries with varying aggregate size distributions and parapet heights serving as the basis of the Kind-Wardlaw design methodology (Kind and Wardlaw 1976; Kind 1977). The equation for \(V_{cr} \) is based on a nominal aggregate size, \(d \), of 1 inch and is also based on a worst-case wind approach angle of 45 degrees whereby vortices at the roof corner regions form and result in the lowest wind speed at which aggregate blow-off is initiated. This condition can also result in aggregate being thrown upwind and then returning to impact the source building. For wind approach angles of 90 degrees (perpendicular to the building’s orthogonal axes), \(V_{cr} \) may be increased by as much as a factor of 1.8 (Kind and Wardlaw 1976).

As further reported in Crandell and Smith (2009), the use of \(d^{1/3} \) to adjust \(V_{cr} \) for aggregate size was also found to provide the optimal prediction of variation in observed wind speed at initiation of aggregate blow-off based on aggregate nominal diameters addressed by a range of aggregate mixes and size distributions in the Kind (1977) wind tunnel data. The 1.1 factor applied to \(V_{cr} \) is based on calibration to field observations, after several major hurricane events, of various aggregate surfaced roofs experiencing either successful performance (no blow-off) or failed performance (blow-off) as related to aggregate size, parapet height, exposure, and wind speed conditions. These field observations in comparison to predictions using the design methodology are reported in Crandell and Smith (2009) and were later confirmed by additional field studies following major hurricane events as reported by Morrison (2011). Finally, the design equation \(V_{roof} \leq 1.1 V_{cr} d^{1/3} \) (i.e., design wind speed at roof less than or equal to the wind speed at which roof aggregate blow-off is initiated) is solved for the parameter \(H_p \) and then multiplied by 12 in/ft to convert \(H_p \) to units of inches, resulting in equation C26.14-1.

Add the following references to Section C26:

REFERENCES

REASON FOR PROPOSAL: (a reason statement providing the rationale for the proposed change must be provided – attach additional pages if necessary).

The significance of and basis for this proposal are explained in the proposed commentary Section C26.14. Roof aggregate has been a major concern in hurricanes and other extreme wind events for many years. The proposed provisions in Section 26.14 (and particularly the added commentary Section C26.14) will help bring appropriate design attention to this issue. The proposed Commentary C26.14 provides guidance and resources to help ensure proper roof system design (parapet height and aggregate size) to mitigate the risk of roof aggregate blow-off and also provide a means of assessing potential risk of debris hazard from surrounding buildings that may have aggregate surfaced roofs. This proposal fills a void in the standard with regard to a lack of addressing wind engineering methods to control or evaluate roof aggregate debris hazard associated with extreme wind events. It has been developed based on direction and input from the Chapter 26 task group and also the WLSC.

CONSTRUCTION COST COMMENTS: Increase Cost Cost increases will result due to larger parapet and/or aggregate sizes being required, or conversion to other roof systems (which may be more or less costly) where use of loose aggregate may become infeasible or impractical. There will be no increase in cost for ballasted single-ply roof systems that comply with the RP-4 standard or other aggregate-surfaced roof systems which are already compliant with these provisions and being used in appropriate design wind conditions with adequate combination of aggregate size and parapet height.

Committee Action on Proposal: [Click to Select] [Click to enter subcommittee voting tally].

Committee Notes including Negative or Opposing Comments to send forward:
[Click or tap here to provide summary of Negatives resolved to send forward; OPTIONAL: Also include opposing comments if submitted.]
AGENDA

I. Call to Order

II. Roll Call & Reading of SPRI Antitrust Statement

III. Review existing topics

IV. Discuss possible updates of existing topics

V. Ideas for additional new topics

VI. Adjournment
SPRI
BPT-1 Standard Development Task Force
Virtual Meeting Webex
April 7, 2020
11:30 a.m.

AGENDA

I. Call to Order
 C. Mader

II. Roll Call & Reading of SPRI Antitrust Statement

III. Review BPT-1 Draft Updates

IV. Consider next steps

V. Adjournment
SPRI
VOC Regulation Monitoring
Virtual Meeting Webex
April 7, 2020
9:00 a.m.

AGENDA

I. Call to Order
J. Bates

II. Roll Call & Reading of SPRI Antitrust Statement

III. PCBTF Update

IV. Rule 1168 Technology Assessment

V. Other VOC issues

VI. Adjournment
SPRI
Roof Substrate Materials - Wetting Curves Task Force
Virtual Meeting Webex
April 7, 2020
11:30 a.m.

AGENDA

I. Call to order
 D. Hawn

II. Roll Call & Reading of SPRI Antitrust Statement

III. Review document prepared for approval to publish (distributed before the meeting electronically)

IV. Call for vote to approve to tech committee the effort to publish

V. Adjournment
AGENDA

I. Call to Order
 A. Burzynski

II. Roll Call & Reading of SPRI Antitrust Statement

III. Website:
 Review update made to standards page

IV. Blogs/Content – Review Schedule and Topics:
 Define topics and schedule for 2020

V. DORA:
 a. Discuss digital promotion of DORA
 b. What can we do using website and SPRI digital platform to drive more traffic to DORA
 and educate specifiers about DORA

VI. Adjournment
SPRI
D6878 TPO Consideration for Revision
Virtual Meeting Webex
April 6, 2020
3:00 p.m.

AGENDA

I. Call to Order

II. Roll Call & Reading of SPRI Antitrust Statement

III. Update on the ASTM ILS testing program

IV. Discussion of the fleece back hail resistance testing

V. Adjournment
AGENDA

I. Call to Order
 L. Cadena/L. Hull/E. Younkin

II. Roll Call & Reading of SPRI Antitrust Statement

III. Review past topics and Miami-Dade’s response (if any) for meeting notes
 L. Cadena

IV. Update on February 12th teleconference with ARMA

V. Update on process to update the FL code to propose use of 3rd party evaluations

VI. Adjournment
AGENDA

I. Call to Order
 J. Schwetz

II. Roll Call & Reading of SPRI Antitrust Statement

III. Review of FM coalition discussion

IV. Discussion on IBHS hail program

V. Establish Task Force objective

VI. Adjournment