

Agenda ASCE 7 (American Society of Civil Engineers)

- Background
 - ASCE 7 and why it is important for roof wind design
 - ASCE 7 and the IBC
- Building Characteristics
 - · Location and Use
 - Physical Parameters
- Changes from ASCE 7-10, ASCE 7-16 & ASCE 7-22

Why is ASCE 7 important?

- The building code (IBC) requires roof assemblies resist the uplift pressures calculated by the ASCE 7
- Independent testing of the assembly (ANSI/FM 4474) is used to certify compliance with the IBC
- Rating achieved by assembly must be greater than or equal to the ASCE 7 results.

3

Background ASCE 7 (American Society of Civil Engineers)

Provides method to calculate building pressure loads (lbs./sqft.) due to:

- Soil
- Hydrostatic Pressure
- Floods
- Snow
- Rain
- Earthquake
- Wind
- Etc.

	e Council (July 2022)
ASCE-7 edition	States
2016	AL, CA, FL, GA, HI, ID, MD, MN, MS, MT, NE, NJ, NY, ND, OK, OR, PA, RI, SC, SD, UT, VA, WA, WV & WY Total 25 States
2010	AK, AR, CT, IN, IA, KY, LA, ME, MA, MI, NC, NH, NM, OH, TN, TX, VT & WI Total 18 States & DC*
Х	AZ, CO, DE, IL, KS, MO, NV Total 7 States
	2016

Factors to Determine Uplift ASCE 7

- Building location
 - Wind
 - Terrain
- Building use
 - Risk Category
- Building physical parameters
 - Height
 - Openings

7

Building Location

Terrain & Wind

Terrain

- Exposure
 - "B" = urban/suburban
 - "C" = open terrain
 - "D" = close to a large body of water
- Hills & Escarpments

Wind

• ASCE 7 Basic Wind Maps (Ultimate Winds or Vult)

Basic Information to Determine Uplift Check List

- Applicable Code and Standard
- Building Location for:
 - · Ultimate wind speed
 - Topography
 - Surrounding Terrain
 - · Wind Direction
- Building Use
- Building Physical Parameters
 - Height
 - Openings

Velocity Pressure Formula

ASCE 7-10: $qz = 0.00256 \times Kz \times Kzt \times Kd \times V^2 \times 0.6$ ASCE 7-16: $qz = 0.00256 \times Kz \times Kzt \times Ke \times Kd \times V^2 \times 0.6$ ASCE 7-22: $qz = 0.00256 \times Kz \times Kzt \times Ke \times Ke \times V^2 \times 0.6$

- qz = velocity pressure
- 0.00256 = numerical coefficient (air density)
 0.6 = allowable stress factor
- Kz = exposure coefficient evaluated at height
 I = Importance Factor
- Kzt = topographic factor
- Kd = wind directionality factor
- V² = basic ultimate wind speed

- Ke = Elevation Factor

Design Pressure Calculations

(Zonal Pressure Calculation)

P = qz [(GCp) - (GCpi)]

- P = Design Pressure for each roof Zone
- GCp = external pressure coefficient & gust-effect factor
- GCpi = internal pressure coefficient & gust-effect factor

Chapter 26 – Ger	CE 7 neral Requiremen	nts
ASCE-7 edition	2010	2016
Scope	Х	х
Definitions	Х	х
Ultimate Wind Speed Maps	x	x
Exposure	х	х
Gust Factor	Х	х
Topographic Factor	х	х
Elevation Above Sea Level Factor		х
Elevation Above Sea Level Factor		Х

Chapter 30 – Compone	
ASCE-7 edition	2010 & 2016
Analytical Method (h <= 60-ft)	х
Simplified Method (h<= 60-ft)	х
Analytical Method (h> 60-ft)	х
Simplified Method (h <= 160-ft)	х
Internal Pressure Coefficient (GCpi)	х
External Pressure Coefficient (GCp)	х

ASCE 7-16

Adjusted from ASCE 7-10

- Adjusted the Calculations
- Reduced Exposure "B" Kz factor for bldg. heights < 30-ft
- New Wind Speed Maps (4 sets)
- New Roof Area Zones (60-ft or less in height)
- **Higher GCp** for 60-ft or less height

Incorporate in IBC 2018 & 2021

ASCE 7-16

Modified Uplift Equation

ASCE 7-10

qz = 0.00256 x Kz x Kzt x Kd x V2

ASCE 7-16

 $qz = 0.00256 \times Kz \times Kzt \times Ke \times Kd \times V2$

Ke = Ground Elevation Factor

27

ASCE 7-16

Table 26.9-1 Ground Elevation Factor, K_e

Ground Elevation above Sea Level ft <0 See note 2 0 1.00 1,000 0.96 2,000 0.93 3,000 0.90 4,000 0.86 5,000 0.83 6,000 0.80 >6,000 See note 2

Note:

- 1. The conservative approximation Ke = 1.00 is permitted in all cases
- 2. The factor Ke shall be determined using interpolation or from another formula

Can reduce uplift from 4% to 20% depending on elevation above sea level

ASCE 7-10 & 7-16 Wind Maps Risk Category Based ASCE 7-10 Based on Risk Category (use of Risk Cat mph) Risk 3,000-year *MRI means 1/3000 chance in one year of wind of this wind speed may **ASCE** Based happen. (0.00033) Risk Ca. 11ph <) (US = 100-mph <) Risk Cat III: (US = 105-mph <)Risk Cat IV: 3,000-year *MRI *Mean Recurrence Interval

ASCE 7-10 & 7-16
Roof Zone Layout (60-ft or less) 0.2h 1 1 2 PLAN Zone 1' = "One Prime" a = 0.4 x height or 0.1 x width, 0.6 x height for all areas, except whichever is less, but not less corner which is 0.2 x height than 0.04 x width or 3-ft.

ASCE 7-16

GCp = external pressure coefficient

Design Pressure Calculations

- P (pressure) = q_z [(GC_p) (GC_{pi})]
- GC_p = external pressure coefficient & gust-effect factor
- GC_{pi} = internal pressure coefficient & gust-effect factor

GCp is determined based on roof zones:

Roof Zones for Bldgs. 60 or less	ASCE 7-10 GCp Coefficient
Zone 1	1
Zone 2	1.8
Zone 3	2.8

Roof Zones for Bldgs. 60 or less	ASCE 7-16 GCp Coefficient
Zone 1'	0.9
Zone 1	1.7
Zone 2	2.3
Zone 3	3.2

Examples Determine the forces exposed to a roof using ASCE 7-16 Calculations Chapter 30 Components and Cladding Examples Part 1 – Analytical method for h ≤ 60 ft Part 2 – Simplified method for h ≤ 60 ft Part 3 – Analytical method for h > 60 ft Part 4 – Simplified method for h ≤ 160 ft

ASCE 7-16

$qz = 0.00256 \times Kz \times Kzt \times Ke \times Kd \times V^2$

- 0.00256 = numerical coefficient to be used except where sufficient climatic data are available
- Kz = velocity pressure exposure coefficient evaluated at height z = h
- Kzt = Topographic factor
- Ke = Elevation above sea level
- Kd = wind directionality factor
- V² = basic ultimate wind speed base on Risk Category

P (pressure) = $q_z [(GC_p) - (GC_{pi})]$

- GC_p = external pressure coefficient & gust-effect factor
- GC_{pi} = internal pressure coefficient & gust-effect factor

Kd **Wind Directionality** Table 26.6-1 Table 26.6-1 Wind Directionality Factor, K_d Structure Type Directionality Factor K_d Buildings Components and Cladding 0.85 Arched Roots 0.85 Circular Domes Chimneys, Tanks, and Similar Structures 1.0^a Square Hexagonal 0.90 0.95 Octagonal Round 1.0^a 1.0^a Solid Freestanding Walls, Roof Top 0.85 Equipment, and Solid Freestanding and Attached Signs Open Signs and Single-Plane Open Frames 0.85 **Trussed Towers** Triangular, square, or rectangular All other cross sections 0.85 0.95 Directionality factor K_d = 0.95 shall be permitted for round or octagonal structures with nonaxisymmetric structural systems.

Calculating Uplift Pressure

P = qz { GCp - GCpi }

Roof Area	qz	GСр	GCpi	Ult. Strength Result in Lbs/Sqft
Zone 1'	19.2	-0.9	0.18	-34.6
Zone 1	19.2	-1.7	0.18	-60.2
Zone 2	19.2	-2.3	0.18	-79.5
Zone 3	19.2	-3.0	0.18	-108.3

ASCE Ultimate Wind Maps

ASCE 7-10 & ASCE 7-16

ASCE 7-05 results where Allowable Stress Design, while 7-10 & 7-16 results are Ultimate Strength

Allowable Stress Design (Vasd)

Are nominal loads for cladding so as not to exceed the structure. Roofing assemblies are defined as cladding.

Ultimate Strength (Vult)

Are the strength loads necessary for structural members

5:

ASCE Ultimate Wind Maps

Allowable vs. Ultimate

ASCE 7-10 & 7-16 Results are Ultimate Strength Pressures (Ult.)

But...

Cladding uses **Allowable Stress Design Pressures (ASD)**, how is this determined?

ASD = ASCE 7-16 Ult. results x 0.6

Or

Convert wind speed back to Allowable for Calculations

1609.3.1 Wind speed conversion. When required, the ultimate design wind speeds of Figures 1609A, 1609B and 1609C shall be converted to nominal design wind speeds, V_{asd} , using Table 1609.3.1 or Equation 16-33.

$$V_{asd} = V_{ult} \sqrt{0.6} = \text{Vult x 0.775}$$
 (Equation 16-33)

	TABLE 1609.3.1 MIND SPEED CONVERSIONS ^{A, b, c}											
Γ	V_{ult}	100	110	120	130	140	150	160	170	180	190	200
	V_{asd}	78	85	93	101	108	116	124	132	139	147	155
ı												

53

Design Pressure

Roof Area	ASCE 7-16 Results in lbs/sqft.
Zone 1'	-34.6 x 0.6= -20.8
Zone 1	-60.2 x 0.6 = -36.1
Zone 2	-79.5 x 0.6 = -47.7
Zone 3	-108.3 x 0.6 = -65.0

Ultimate or strength-based wind speeds are used in the wind speed maps. Apply 0.6 factor for allowable stress design

ASCE 7-16

$qz = 0.00256 \times Kz \times Kzt \times Ke \times Kd \times V^2$

- 0.00256 = numerical coefficient to be used except where sufficient climatic data are available
- Kz = velocity pressure exposure coefficient evaluated at height z = h
- Kzt = Topographic factor
- Ke = Elevation above sea level
- Kd = wind directionality factor
- V² = basic ultimate wind speed base on Risk Category

P (pressure) = q_z [(GC_p) – (GC_{pi})]

- GC_p = external pressure coefficient & gust-effect factor GC_{pi} = internal pressure coefficient & gust-effect factor

Kz (TABLE 26.10-1/Exposure D)				
Height above	Ground Level, z		Exposure	
ft	m	В	С	D
0–15	0–4.6	$0.57 (0.70)^a$	0.85	1.03
20	6.1	$0.62 (0.70)^a$	0.90	1.08
25	7.6	$0.66 (0.70)^a$	0.94	1.12
30	9.1	0.70	0.98	1.16
40	12.2	0.76	1.04	1.22
50	15.2	0.81	1.09	1.27
60	18.0	0.85	1.13	1.31
70	21.3	0.89	1.17	1.34
80	24.4	0.93	1.21	1.38
90	27.4	0.96	1.24	1.40
100	30.5	0.99	1.26	1.43
120	36.6	1.04	1.31	1.48

Velocity pressure calculation

 $qz = 0.00256 \times Kz \times Kzt \times Kd \times Ke \times V^2$

Variable	Building	ASCE 7-16
Kz	Hight & Terrain	1.43
Kzt	Topography	1
Kd	Wind Directionality	0.85
Ke	Elevation Factor	1
V	Risk Cat Maps	119-mph
$\mathbf{q}_{\mathbf{z}}$	Results	44.1-lbs/sqft

Gcpi CoefficientTable 26.13-1Enclosure ClassificationInternal Pressure Coefficient, (GC_{pi}) Enclosed buildings+0.18
-0.18Partially enclosed buildings+0.55
-0.55Partially open buildings+0.18
-0.18Open buildings0.00

Roof Area ASCE 7-16 Results in Lbs/Sqft Field -69.6 x 0.6= -41.8 Perimeter -109.3 x 0.6 = -65.6 Corner -148.9 x 0.6 = -89.4 Ultimate or strength-based wind speeds are used in the wind speed maps. Apply 0.6 factor for allowable stress design

ASCE 7-22

Adjusted from ASCE 7-16

- Adjusted the Calculations (moving wind directionality factor)
- Removed Simplified Methods to determine uplift pressures
- New Roof Area Zones for Steep Sloped Roofs
- New Chapter 32 on Tornados Loads
- New Calculations for tornados
- New Maps for tornados

Incorporate in IBC 2024

7: