

By Precisionviews - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=83229785

SPRI Wind Design Seminar Introduction to ASCE 7

Low-slope Roofing Market

- Estimated to be about \$35 to \$45 Billion annually*
- Roughly 5% of the construction industry
- Approximately 10% the cost of the building, but approximately 2/3 3/4 of construction industry litigation

*NRCA, Reid Ribble, February 2017

Codes and Standards

Roofing and Reroofing is address in:

- International Building Code
 - Fire Resistance
 - Material Performance
 - Impact Resistance/Rooftop Traffic
 - Wind Resistance
 - Platform for PV Systems & Garden Roofs

Adoption by State

International Code Council (February 2024)

FBC / IBC edition	ASCE 7 edition	States
FBC 2024	2022	FL*
2018 & 2021	2016	AL, AK, AR, CA, CT, FL, GA, HI, ID, LA, MD, MN, MS, MT, NE, NH, NJ, NY, ND, OH, OK, OR, PA, RI, SC, SD, UT, VA, WA, WV, & WY Total 31 States
2012 & 2015	2010	IN, IA, KY, ME, MA, MI, NM, NC, TN, TX, VT, & WI Total 12 States & DC**
2006 & 2009	2005	0
Adopted by Local Governments	??	AZ, CO, DE, IL, KS, MO, & NV Total 7 States
*Florida 8 th Edition = IBC 2	021	** District of Columbia

District of Columbia

Section 1503 Weather Protection

1503.1 General

Roof decks shall be covered with approved roof coverings secured to the building or structure in accordance with this code and the approved manufacturers' instructions such that eh roof coverage shall serve to protect the building or structure.

Section 1505 Fire Classification

1505.1 General

Roof assemblies shall be divided into the classes defined below. Class A, B and C roof assemblies and roof coverings required to be listed by this section, shall be tested in accordance with ASTM E 108 or UL 790.

UL – External Fire Rating

Exterior Fire Test Exposure: Class A; UL 790 & ASTM E108, assemblies and roof slopes

Section 1508 Roof Insulation

1508.1 General

The use of above-deck thermal insulation shall be permitted provided such insulation is covered with an approved roof covering and passes the test of FM 4450 or UL 1256 when tested as an assembly.

This test clarifies if a thermal barrier is necessary with specific foam plastic insulation

Performance Section

International Building Code Chapter 15: Physical Properties Roofing shall meet the following: Accelerated Weathering (covering) Impact Resistance (Assembly) Uplift (Assembly)

Accelerated Weather

Roofing system shall withstand 2000 hours of exposure when tested according to ASTM G 152 (Carbon Arc), ASTM G 154 (Fluorescent Ultraviolet Lamp) or ASTM G 155 (Xenon-Arc testing)

Impact Resistance

Roofing system shall resist impact damage when tested according to ASTM D 3746, ASTM D 4272 or FM 4470 (Resistance to Foot Traffic Test)

Impact Resistance

FM 4470 (Resistance to Foot Traffic Test)

Foot Traffic Resistance Tests

Testing for foot traffic resistance shall be as follows: A 3 in. (76 mm) square steel plate with rounded corners is placed on the sample. A 200 lb (91 kg) load is imposed on the plate five times.

Conditions of Acceptance for Foot Traffic

Resistance Roof Cover - There shall be no sign of tearing or cracking of the roof cover causing exposure of the substrate.

Insulation - The top surface of the roof insulation shall resist puncture. Under this same loading the roof insulation shall not fracture over rib openings of the steel deck.

Section 1507 Requirements for Roof Coverings

1507.11.2

Modified bitumen roof coverings shall comply with CGSB 37-GP-56M, ASTM D6162, ASTM D6163, ASTM D6164, ASTM D6222, ASTM D6223, ASTM D6298 or ASTM D6509

1507.12.2

Thermoset single-ply roof covering shall comply with ASTM D4637, or ASTM D5019

1507.13.2

Thermoplastic single-ply roof coverings shall comply with ASTM D4434, ASTM D6754, or ASTM D6878

Wind Resistance

IBC - Chapters 15 and 16

SECTION 1504 PERFORMANCE REQUIREMENTS

1504.1 Wind resistance of roofs. Roof decks and roof coverings shall be designed for wind loads in accordance with Chapter 16 and Sections 1504.2, 1504.3 and 1504.4.

1603.1.4 Wind design data. The following information related to wind loads shall be shown, regardless of whether wind loads govern the design of the lateral force-resisting system of the structure:

- 1. Basic design wind speed, V, miles per hour and allowable stress design wind speed, V_{asd} , as determined in accordance with Section 1609.3.1.
- 2. Risk category.
- Wind exposure. Applicable wind direction if more than one wind exposure is utilized.
- 4. Applicable internal pressure coefficient.
- Design wind pressures to be used for exterior component and cladding materials not specifically designed by the *registered design professional* responsible for the design of the structure, psf (kN/ m²).

Results are in lbs/sqft

Roof Assemblies

Low-slope

- Weatherproof
- < 2:12 slope

Steep-slope

- Water shedding
- ≥ 2:12

Today's discussion is focusing on low-slope

Standard ASCE 7 (American Society of Civil Engineers)

- 1988- first edition of the ASCE 7 was published
- In use updated: 2005, 2010, 2016, & 2022
- Latest publication is 889-pages
- Roof Systems uplift, approximate 100-pages, explains method on how to calculate wind loads (lbs./sqft.)

Background ASCE 7 (American Society of Civil Engineers)

Provides method to calculate building pressure loads (lbs./sqft.) due to:

• Soil

• Floods

• Snow

• Hydrostatic Pressure

- Rain
- Earthquake
 - Wind
- Etc.

ASCE 7 Similarities

ASCE-7 edition	2010	2016	2022
Chapter(s)	Chapters 26- 31	Chapters 26-31	Chapters 26- 32
General Requirements	Х	Х	X
MWFRS* (Directional Procedure)	x	Х	x
MWFRS* (Envelope Procedure)	x	х	X
Appurtenances and Other Structures (Directional Procedure)	x	x	x
Components and Cladding	x	Х	X
Wind Tunnel Procedure	X	Х	X
Tornado			X

*MWFRS: Main Wind Force Resistance System

ASCE 7

Chapter 26 – General Requirements

ASCE-7 edition	2010	2016	2022
Scope	Х	Х	Х
Definitions	Х	Х	Х
Ultimate Wind Speed Maps	x	x	x
Wind Directionality Factor	X	X	X
Exposure	Х	Х	Х
Gust Factor	Х	Х	Х
Topographic Factor	X	X	X
Elevation Above Sea Level Factor		Х	Х

ASCE 7

Chapter 30 – Components & Cladding

ASCE-7 edition	2010	2016	2022
Analytical Method (h <= 60-ft)	х	х	Х
Simplified Method (h<= 60-ft)	х	х	Removed
Analytical Method (h> 60-ft)	х	х	Х
Simplified Method (h <= 160-ft)	х	Х	Removed
Internal Pressure Coefficient (GCpi)	Х	Х	X
External Pressure Coefficient (GCp)	х	х	х

Analytical Method: Basic Formula Velocity Pressure (qz)

ASCE 7-10: $qz = 0.00256 \times Kz \times Kzt \times Kd \times V^2 \times 0.6$ ASCE 7-16: $qz = 0.00256 \times Kz \times Kzt \times Ke \times Kd \times V^2 \times 0.6$ ASCE 7-22: $qz = 0.00256 \times Kz \times Kzt \times Ke \times \frac{Kd \times}{2} \times V^2 \times 0.6$

- 0.00256 = numerical coefficient, unless sufficient climatic data are available
- Kz = velocity pressure exposure coefficient evaluated at height z = h

- Kzt = Topographic factor
- Kd = wind directionality factor
- V² = basic ultimate wind speed
- I = Importance Factor
- Ke = Elevation Factor

Factors to Determine Uplift Basic Criteria for all ASCE 7 Versions

Building location

- Terrain
- Wind

Building use

• Risk Category

Building physical parameters

- Height
- Openings

Building Location

Building Location Terrain & Wind

Terrain

- Exposure
 - "B" = urban/suburban
 - "C" = open terrain
 - "D" = close to a large body of water
- Hills & Escarpments

- ASCE 7 Basic Ultimate Wind Maps
 - Risk Category I
 - Risk Category II
 - Risk Category III
 - Risk Category IV

Kz: Height and Terrain Exposure "B"

Surface Roughness "B":

Urban and suburban areas, wooded areas, or other terrain with numerous closely spaced obstructions having the same size of singlefamily dwellings or larger.

Kz: Height and Terrain Exposure "C"

Surface Roughness "C":

Open terrain with scattered obstruction having heights less than 30-ft. This includes flat open country and grasslands.

Kz: Height and Terrain Exposure "D"

Surface Roughness "D":

Flat, unobstructed areas and water surfaces. This category includes smooth mud flats, salt flats, and unbroken ice.

Kzt: Hills & Escarpments Special calculations are required for hills and escarpments:

Note: No calculations available for intensified winds at the end of valleys. Local authorities would need to offer assistance.

V²: Basic Ultimate Wind Speed Determine from applicable ASCE 7:

Risk Category Building Use

Risk Category I = Low hazard to human life	Agricultural, minor storage (golf cart shed), and certain temporary facilities
Risk Category II = Most typical buildings	All buildings except those listed in Category I, III or IV
Risk Category III = Substantial hazard to human life	Facilities for more than 300 persons (schools, health care, power generation, toxic chemicals)
Risk Category IV = Essential Facilities	Surgery, fire & rescue, communications, emergency shelters, and national defense.
Note: Importance Fa	ictor has been renamed to Risk Categories and this

factor has been rolled into the wind speed

Building Physical Parameters

Building Physical Parameters Characteristics

Roof Area

- Height & Slope
- Parapets Heights

Building Structure

- On a hill or precipices
- Building Openings
 - Open, Partial Enclosed, Enclosed
- Building Overhangs
- Interior Pressurized

Building Physical Parameters Parameters Affects

Increase uplift

- The higher the roof area
- Building on hill
- Building openings
- Pressures from interior mechanical

Reduce uplift

• Parapet heights greater than 3-ft

Building Openings

Opening Types	Amount of Openings		
Enclosed	Less than 10%		
Partially Enclosed	10% to 20%		
Partially Open	Does not comply with the others		
Open	80% or greater		

Basic Information to Calculate Uplift Pressures Check List

 Applicable Code and Standard

- ✓ Building Location for:
 - ✓ ASCE 7 ultimate winds
 - ✓ Topography
 - ✓ Surrounding Terrain
 - ✓ Wind Direction
- ✓ Building Use
- Building Physical Parameters
 - ✓ Height
 - ✓ Openings
 - ✓ Roof Dimensions

ASCE 7-10Roof Zone LayoutFigure 30.4-2A $h \le 60$ -ftSlope $\le 7^{\circ}$

Design Pressures (Zonal Pressures) P (pressure) = $q_z [(GC_p) - (GC_{pi})]$

Note:

Zone 2 and 3 areas are 0.4 x height or 0.1 x the width whichever is smaller but cannot be less than 0.04 x width or 3-ft.

ASCE 7-16 & 7-22Roof Zone LayoutFigure 30.3-2A $h \le 60$ -ftSlope $\le 7^{\circ}$

Design Pressures (Zonal Pressures) (7-16) $P = q_z [(GC_p) - (GC_{pi})]$ (7-22) $P = q_z \times K_d \times [(GC_p) - (GC_{pi})]$

Note:

Zone 1 & 2 area 0.6 x building height Zone 3 is "L" shaped with legs 0.6 x building height

and width 0.2 x building height

Example Results ASCE 7

Concord, NC

40-ft high			ASCE 7-10	ASCE 7-16	ASCE 7-22	
Exposure "C"		Ultimate Winds	120-mph	124-mph	122-mph	
		Zone 1'		23 psf	22 psf	
Enclosed Bldg	<	Zone 1	24 psf	40 psf	38 psf	\triangleright
		Zone 2	39 psf	52 psf	51 psf	
Category IV		Zone 3	59 psf	71 psf	69 psf	

Net Wind Loads are increasing (66% field)

Wind loads:

Risk Category II VASD = 96.8 mph, Vult = 125 mph Wind Importance Factor, Iw = 1.0 Wind Exposure = B Wind pressures and distributions in accordance with Section 1609.

Structural Drawing Example

Vult 125-mph	Submitted Pressures (PSF)
Zone 1	-29.0
Zone 2	-48.7
Zone 3	-73.3

Laboratory Testing of Roofing Assemblies

Tested Assemblies ≥ Uplift Pressures

Manufacturer assembly tests:

These tests certify the uplift rating for the specified assembly from lab testing

UL 580

ANSI/FM 4474

UL 1897

Certification of Compliance Uplift Rating Test (ANSI/FM 4474)

Test panel exposed to air pressure from below. **15 psf** levels, each level held for **1 minute**. Increased until failure.

Ratings:

60 psf; 75 psf; 90 psf; 105 psf...

ANSI/FM 4474 (12'x24' size testing table)

Results are in lbs/sqft

12'x24' Testing Table

Terms of Use · Privacy Policy · Compatibility

© 2005-2019 FM Approvals LLC. All rights reserved.

SPRI developed DORA, "Directory of Roof Assemblies"

www.dora-directory.com

dora Home Search			Login	Create Account
Let's Find a Listing				
Quick Lookup Listing ID Q	Reset Search Fields			
Assembly Specifications				
Listing Owner 🔹				
Roof System 🔻	Roof Application	Deck Type	▼ Covering Type ▼	
Assembly Performance				
= Tested Wind Uplift Lo	ad Capacity v psf			
Assembly Contents				
Has a Thermal Barrier				
Product Category 🔹	Product Type	Supplier • Tradena	ame 🔻 Secu	rement •
+ Add New Filter	Se	arch		
	Search	Results: 0		
Copyright © 2018 SPRI. All rights reserved.				

DORA addresses:

- Modified Bitumen and Single-ply membranes
- All deck types (including wood & cementitious wood fiber)
- Wind resistance (will soon be adding fire resistance)

Ballasted Systems & Overburden

International Code Council (ICC)

International Building Code (IBC)	Chapter 15		
Wind Unlift Dequirement	1504 Adhered or Mech. Fast: ASCE 7		
vvina Opiiit Requirement	1504 Ballasted System: ANSI/SPRI RP-4		

Ballast – ANSI / SPRI RP-4

C. For Parapet Heights From 12.0 to Less Than 18.0 Inches Maximum Allowable Wind Speed (MPH)							
Bldg. Ht. Ft.	Syst Expo	System 1 System Exposure Exposure		em 2 osure	Syst Expo	System 3 Exposure	
	C*	B*	C*	B*	C*	B*	
0-15	125	140	140	140	140	140	
>15-30	105	130	140	140	140	140	
>30-45	100	120	130	140	140	140	
>45-60	95	110	120	140	140	140	
>60-75	90	105	115	140	140	140	
>75-90	90	105	115	140	140	140	
>90-105	90	100	115	125	140	140	
>105-120	85	100	105	125	125	140	
>120-135	No	No	No	125	125	140	
>135-150	No	No	No	120	125	140	

Overburden: Vegetated Roofs The Concept

Growth Media

Drainage

Membrane (Adhered)

2" to 4" – Shallow (12 - 24psf) (Approx. 80% of Garden Roof Market)

Overburden: Patio / Terraces

Concrete Pavers

The structural system must be designed to carry the extra weight.

Metal Edging & Gutters

Roof Edge Failure Examples

Roof Edge Failure Examples

Roof Edge Design Pressures Calculations

Need:

- Local Wind Based on ASCE 7 & Risk Category
- Building Height
- Building Exposure (B, C or D)
- Edging must be enclosed
- ASCE 7 Building Zones: 3 & 5

SPRI is your home for commercial roofing industry information. Here, you can browse through our resource documents, keep up with our events, search for members and learn more about SPRI ANSI Standards.

SPRI is always looking for ways to improve the quality of education on the industry.

- Proactively Advance Technology
- Intervene and Impact Code and Testing Issues
- Accurate Data: Energy Savings, Recycling + Sustainability Issues
- Monitor Legislative and Regulatory Issues
- VIEW RESOURCES

💥 Resolve Technical Issues

SPRI Standards

- ANSI/SPRI/FM 4435/ES-1 Test Standard for Edge Systems Used with Low Slope Roofing Systems *
- ANSI/SPRI GT-1 Test Standard for Gutter Systems*
- ANSI/SPRI RP-4 Wind Design Standard for Ballasted Single Ply Roofing Systems*
- ANSI/SPRI VF-1 External Fire Design Standard for Vegetative Roofs*

*referenced in the International Building Code

Thank you for Your Attention!

